Efficient Search of Multidimensional B-Trees

Harry Leslie Rohit Jain

Dave Birdsall

Hedieh Yaghmai

Tandem Computers Incorporated
10100 N. Tantau Ave., LOC 251-05
Cupertino, CA 95014-2542
{leslie_harry, jain_rohit, birdsall_dave, yaghmai_hedich} @tandem.com

Abstract

Data in relational databases is frequently stored and
retrieved using B-Trees. . .In decision support
applications the key of the B-Tree frequently involves the
concatenation of several fields of the relational’ table.
During retrieval, it is desirable to be able to access a
small subset of the ‘table based on partial key
information, where some fields of the key may either not
be present, involve ranges, or lists of values. It is also
advantageous to allow this type of access with general
expressions involving any combination of disjuncts on
key columns. This paper describes a method whereby B-
Trees can be efficiently used to retrieve small subsets,
thus avoiding large scans of potentially huge tables.
Another benefit is the ability of this method to reduce the
need for additional secondary indexes, thus saving
space, maintenance cost, and random accesses.

Introduction

In the last few years various factors have resulted in
Decision Support Systems (DSS) gaining popularity.
Some of these factors have been:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publicatior and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 21st VLDB Conference

Zurich, Switzerland, 1995

710

A doanard trend in hardware server and disk
COSts.

The evolution of database products which are giving
improved performance on an mcreasmg number of
hardware platforms.

Use of informaﬁon for competitive advantage. This

trend has been prompted by a desire tp provide
higher levels of service to customers or improve
targeting of customers to draw them away from
increased competition. This has manifested itself in
promotions such - as the frequent flyer or buyer
programs Also, information ‘is being used to
decrease costs such as store inventory, etc.

The advantage of seeing more and more detail
combined with improved performance has prompted
many users to move to DSS pladorms. If the
movement of men's jeans off the shelf were being
monitored before, now it is the size 32, black, brand
X, style Y, men's jeans that is under close scrutiny.
Also, the time dimension being considered -has
slowly shrunk from quarterly trends to monthly,
weekly, and now daily trends. In a word, micro-
marketing is in vogue. Multidimensional databases
that hosted such DSS often cannot support such
level of detail.

Increased availability of client tools that provide
easier access to the information along with desktop
tools that facilitate the further filtering,
summarization, and presentation of the information.
Multidimensional front end tools are also gaining
popularity that provide the capabilities previously
available in multidimensional databases, but now are
targeted towards large relational data warehouses.

The above is by no means an exhaustive list, but it is a
reality today that Decision Support Systems are being
implemented by many DP shops and the sizes of DSS
databases often dwarf the size of the largest operational
databases. This trend can be substantiated by many
studies done by firms such as the Gartner Group and-the
Meta Group.

Along with the above trend has been the increase in
dimensional modeling. This is the design of the database
based on key dimensions of ‘the business. = These
dimensions may be time, geography, product, -and so
forth. Typically such dimensions are used to query these
large databases first for summary information and then
for detail information as the user drills down to
increasing levels of detail. - Summary information
provides high level trends, but many' important insights
offering competitive advantage can only be discovered
from the details.

When providing the criteria for these dimensions in a
query, a user may or may not provide values for all the
dimensions. So for a Sales table with dimensions such as
Date, Store and Item the user may want sales.for a week
for an item across all stores. No matching criteria may
be provided for the Store dimension, or for a parncular
dimension the user may provide a set of Values. So the
user may want information for 4 weeks of sales for a
group of stores for certain items. The criteria specified
for these dimensions may vary considerably from one
query to another based on the type of user. A buyer for a
large retailer has different objectives from a person in the
marketing or inventory control departments accessing the
same database. There is also a difference between users
consistently submitting similar queries for operational
decisions versus those users who are looking for strategic
information. The latter type of user is data mining or
data surfing, or in other words looking for some
correlation or trend which may not be obvious from
standard reports, and is best found by detailed
investigation of anomalies. All of this leads to a
challenge in index design. When the database is very
large (100 GB to Terabytes) this may mean alternate
indexes are prohibitively expensive. So one has to rely
on a single index (the B-tree clustering index) to meet
the requirements of these varied demands.

Typically most DBMSs have to scan the whole table
when faced with the kind of queries mentioned above --
with a set of values specified for multiple columns of the
index, ranges on intervening columns, or no predicates
specified for leading or intervening key columns. ‘

This is where the MultiDimensional Access Method
(MDAM) steps in. It is a new access method that works
efficienly with such multidimensional access against
standard B-Tree based tables.

Multidimensional B-Trees

A multidimensional B-Tree is one that is defined on
multiple columns (dimensions).

Subsets of data can be read efficiently from a B-Tree
becausc they are clustered according to the values
contained in their key columns. This is because records
containing successive key values are stored in one or
ore blocks of the B-Tree. So, many records are read by
a siﬁgl‘e’access of thése contiguous blocks.

In ﬁgure 1 below a B-Tree is represented with three
dimensions (or columns). The total number of rows in
this table is 27. Each dimension has three values. Note
that for dimension 2 each'value is repeated for each value
of dimension 1. The first (smallest labeled a) shaded
area shows how much is retrieved for an equal predicate
on “all three dimensions (dimenision_1 ‘= 1 and
dimension_2 = 2 and dimension_3 = 2).. The second
shaded area (b) shows how much is retrieved for equal
predicates on the first two dimensions (dimension_1 = 2
and dimension_2 = 2). and the third shaded area (c)
shows how much is retrieved for an equal predicate on
dimension 1 (dimension_1 = 3).

dimension_1 dimension_2

_dimension_3

Figure 1

Figure 2 shows the same B_Tree, but shows what is
retrieved wheri there is only a predicate on the third
column (dimension_3 = 2).

711

In this case (dimension_3 = 2) the same value for
dimension_3 exists for each value of dimension_2 (1, 2
and 3) and each value of dimension_1 (1, 2 and 3).

MDAM can do this type of access (with a predicatc only
on the third dimension) using an index, whereas other
data base management systmns usmg B-Trees would

PP It RS Py Y, & PEIIEH. SIPIL. L. S

hasa
Lave 10 1€ad ine entife ldU.lU Or 1Cquirc d. acwuuary lIlUCX

dimension 2 dimension 3

dimension 1

Figure 2

Multidimensional Access to B-Trees

Much has been written over the years about B-Trees.
Almost all vendors implement them as the primary type
of index structure. They perform well for a large variety
of applications. The updating, balancing, caching, and
management of B-Trees have well understood solutions.
B-Trees have been the foindation ‘of very large On-Line
Transaction Processing (OLTP) systems and have
facilitated very high transaction processing rates, as
demonstrated by various TPC-C benchmarks. These
benchmarks. have demonstrated that B-Trees support
highly available, scalable, - distributed transaction
processing applications.

However multidimensional dccess has generally been left
to new types of indexing methods rather than leveragmg
the existing and useful B-Trees.

As shown in this paper multidimensional access of
existing B-Trees can be efficient for a large range of
multidimensional queries. ‘B-Trees have. already proven
their usefulness in dealing with large volumes of updates
across large databases. e

Tandem allows use of B-Trees for both the base table and
secondary indexes. In the base table the leaf nodes are
the data blocks that contain the data records. In a

secondary index, each record in the leaf node block
contains primary index columns that identify an
individual data record in the base table. Both the base
table and secandary indexes can be range partitioned by
the leading key columns of the primary and secondary
index respectively.
MDAM makes existing B-Tree indexes much more
useful by exteading their use to a broad range of queries
that can use them efficiently, thus improving response
time and reducing the need for additional secondary
indexes. When the need for secondary indexes is reduced
the disk requirements for large databases are also
reduced. In addition the choices for database
organization are expanded. (i.e. Columns of the base
table that do not coniain many unique values and are not
often- zeferenced in queries can now be used as leading
key columns of an index.)

This paper demonstrates how MDAM exploits existing
B-Tree indexes for many more queries far more
efficiently than previous B-Tree access methods.

Major Features of MDAM

Earlier _discussions, allude 0 some of MDAM'
advantages. They are summarized here:

¢ Range predlcatcs on leading or intervening key
columns.

¢ Missing predicates on leadmg or intervening key
columns.

o INlists on multiple kpyqdlumns.

e NOT equal (<>) predicates.

¢ Multivalued predicates.

¢ Elimination of redundant predicates.

¢ Elimination of empty sets.

o Pre-execution duplicatc elimination.

e Preserving index order for rows retrieved.

o Sparse or Dense Access

The significant point is that while providing all these
capabilities MDAM reads the minimal set of records

required to process the query. Also, it transforms the
original set of predicates into predicates on disjoint

712

ranges. This avoids the overhead of reading the same
row many times and then having to eliminate duplicates.
The ranges are ordered according to the order of the
index. So MDAM maintains -the order of the rows
returned to that of the index. This facilitates efficient
grouping , merge joins, and reduces the sorts sometimes
necessary to order the data.

Each of the above features is discussed below. Thé table
used to illustrate the features is: :

SALES with the columns:

dept
date
item_class
store
item
total_sales

With a key on columns dept, date, item_class, and store.

Intervening Range Predicates

An intervening range predicate is a range predicate
specified on a leading or mwrmedlatc column of an
index. Columns preceding and following this column
may have equality predicates specified on them. An
example of a query with such predicates is:

SELECT date, sum(total_sales)
FROM Sales
WHERE dept =10
and date between "06/01/95" and "06/30/95"
and item_class =20
and store = 250
GROUP BY dept, date;

Normally the predicates on column item_class and store
cannot be used as keys by most DBMS' because of the
intervening range predicate on date. However MDAM
allows the use of all four key columns.

MDAM processes range predicates by stepping through
the values, existing in the table, for the column on which
the range has been specified. Assume that the values for
date in the database between 06/01/95 and 06/30/95 are
06/04/95, 06/11/95, 06/18/95, and 06/25/95.

MDAM first searches for the value a date greater than or
equal to 06/01/95 and less than or equal to 06/30/95
where dept equals 10. It finds the value 06/04/95. Then
it retrieves all rows that are qualified by the following set
of predicates:

dept=10, date="06/04/95", item_class=20, store = 250

We call this retrieval of a set of rows an access. After it
gets all the rows that satisfy such an access, it searches
for the next value of date for dept 10 which is greater
than 06/04/95. We call this search a probe. It finds
06/11/95. Next it retrieves all rows that are qualified by
the following set of predicates:

dept=10, date="06/11/95", item_class=20, store=250

In this manner, it continues processing the next value for
date in the database and so on.

" Even when a large number of rows are being processed

(often thousands to millions), the overhead of each access
to find the next value for the column in the database, as
illustrated in the above example, is minuscule. If there
are many item classes and stores MDAM will have
avoided accessing thousands, if not millions, of rows.

No access was required to another dimension table to
determine all the possible values for date in that range
and then perform a join to accomplish the same thing.
Besides, the values resulting from such a table may be all
possible values for the column, whereas the database may
have only a subset of such values. = Because MDAM
maintains the order of the index, the aggregation
specified in the query can be performed very efficiently,
without a sort being necessary.

Missing Key Predicate
When no predicates have been specified for a leading or
intervening key column, MDAM can still use the

subsequent columns for keyed access. The following
query is an example:

SELECT date, sum(total_sales)
FROM sales
WHERE
date between "06/01/95" and "06/30/95"
and item_class =20
- and store =250 .
GROUP BY dept, date;

Note that no predicate has been provided for the first key
column dept.. Most DBMSs would not be able to use the
index for keyed access and would have to.resort to a full
table scan for such a query. However, MDAM can
handle this query efficiently. , It treats the missing
predicate for dept as an implied range of MIN_VALUE
to MAX_VALUE (note that this includes NULL values).

713

These are respectively the minimum and maximum
permissible values supported for the datatype of the
missing key column.

So let us assume that the values for the column dept in
the table range from 1 through 100. MDAM first
searches for a dept greater than MIN_VALUE. It finds
the value 1. Next it finds the first value for date as
describe above and then uses the following set of
predicates for its first access:

dept=1, date="06/04/95", item_class=20, store=250

After retrieving the rows for this access, it will vary the
value for the column date, as discussed earlier, to do the
following accesses against the table:

dept=1, date="06/11/95", item_class=20, store=250
dept=1, date="06/18/95", item_class=20, store=250
dept=1, date=" 06125/95“ item_ c]ass-20 store=250

Having covered the range of dates, it then increments the
previous value for dept by 1 to do the following accesses,
starting with the first date value agam -

dept=2, date=" 06/04/95", 1tem_class=20, store=250
dept=2, date="06/11/95", item_class=20, store=250
dept=2, date="06/18/95", item_:class=20, store=250
dept=2, date="06/25/95", item_class=20, store=250

This results in 4 probes per dept for 100 departments,
for a total of 400 accesses, each of them requiring a probe
to determine the next date value to retrieve. ‘Extra probes
are not required to retrieve values for the column dept,
other than to get the starting value because this is a dense
column. Dense columns do not need to be probed to
determine their next value. (see Sparse vs Dense later in

this paper.)
IN Lists

fo maw mooammslallo 2antas gamanifia

I}‘Y lislb arc %bﬂlud.lly 11‘ plUUlbdlDb apcuucu lUl a]&Ey

column. The predlcatc could also be of the form

2tacn Alnea L 2bmaen Aloeas &N

nn
IWCIN_C1ass=00 UN 1WI_C1ass=ov ...

Such a predlcatc is also considered an IN list. So let us

cpm L~ mmm i ao s TAT ey

see how MDAM PIroCesses LN lists ui
query as an example

2amnn Alaoo ’)

UL N

illg wc IULIUW.IIIB

SELECT date, item_ class, store, sum(total sales)

T MY r 1.

CRUM dICS

WHERE

Aosa b PP nzln1 ln:" nend WOLZIANIO
gaie peiweenn vorv1/55 " and uos

and item_q class IN (20, 35, 50)

..... NN HEN
dllu JLULC .ll‘ \‘UU, bJU}

~J
—

o

GROUPBY dept, date, item_class, store;

Key columns dept and date are handled as discussed
before. However, instead of using just the predicates
item_class=20 and store=250 with each access, multiple
accesses are done for each value provided in the IN list
for these columns. So the following access in the
previous example:

dept=1, date="06/04/95", item_class=20, store=250

is done for each value of item_class. For each value of
item_class, each value of store results in an access as
well. so the following accesses are done for the first
values of dept and date:

dept=1, date="06/04/95", item_class=20, store=200
dept=1, date="06/04/95", item_class=20, store=250
dept=1, date="06/04/95", item_class=35, store=200
dept=1, date="06/04/95", item_class=35, store=250
dept=1, date="06/04/95", item_ class=50, store=200
dept=1, date="06/04/95", item_class=50, store=250

Since the values for item_class and store have been
provided in the query, no extra accesses are required
against the table to deternune their next values

During all of this MDAM preserves the original order of
the index, making the computation of aggregates very
efficient. Materialization of a hashed or sorted
intermediate is not required for forming groups. ~

For the above query MDAM would perform 2400
accesses. If Sales is a small table the SQL optimizer
might decide to just read the entire table. When there are
thousands or millions of rows qualifying for each access,
however, MDAM may prove to be very -efficient
considering the rows it does not have to access. The
row$ resulting from' the 2400 accesses may be a small
subset of the entire table and may result in the query
being executed in minutes mstcad of the hours it might
take to do a full table scan. Note, that since the rows to
be read for each access are clustered, MDAM can read
these at very high scan rates using very efficiént bulk 1/0,
pre-feich, and virtual buffering capabilities.

Tables on Tandem systems are partitioned on a part or all
of the primary or clustering key columns. Typically,
DSS queries involve predicates on the key columns, with
one or more of the key columns having range or In list
predicates.

If the same query uses paraliel execution, the 2400 access
may not seem that confounding. If the sales table

contains 100 GB spread across 50 partitions, and is
partitioned by dept, each partition is accessed by an
executor server process in parallel. Therefore the
number of accesses per process is now 48 (2400/50).
Since each partition contains 2GB, and we are accessing
only a small part of each partition, this query may
actually be executed in seconds.

"NOT =" Predicates

Most DBMSs would not consider "NOT =" predicates to
be very useful for keyed access. Predicates of the form
NOT IN (3, 5, 8) which translates to NOT = 3 AND
NOT = 5 AND NOT = 8 also fall into this category.
MDAM can use such predicates for keyed access as well,
Their efficiency depends on the selectivity of the column
or the number of unique values in the table. for the
column. Consider a predicate of the form:

WHERE dept NOT IN (3,5,8)

Now, if there are 100 departments (as we assumed
before) use of this as a key would not have much benefit
because it eliminates only 3% of the depis. However, if
there are only 10 departments, the impact on the
execution time of using this predicate is a réduction of
about 30%. The lower the number of unique values for
the column and the higher the number of values in such a

NOT list specified by a query the more the benefit from -
MDAM. MDAM uses the "NOT =" predicate by

transforming it into a set of ORed predicates. So dept

NOT=3 is transformed into dept < 3 OR dept > 3. For

the query specified above the predicate-is transformed to:

WHERE (dept<3 OR dept>3)
and (dept<5 OR dept>5).
and (dept<8 OR dept>8)

MDAM will access departments 1, 2, 4, 6, 7, 9 and 10.
Not doing the access for departments 3, 4 and 8 can
reduce the time needed to complete the query versus
making a full table scan. '

Multi-Valued Predicates

Multi-valued predicates (or in SQL-92 terminology "Row
Value Constructors") can also be'used by MDAM. A
predicate of the form (dept, date, item_class ,store) = (10,
"06/04/95", 20, 250) is considered the equivalent of
equality predicates on each of the columns in the
following form:

dept = 10

and date = "06/04/95"
and item_class =20
and store = 250

Such a multi-value predicate is processed as discussed in
earlier sections. However, when a range is expressed in a
multi-value predicate (using one of the operators >, >=,
<, <=) the transformation is quite different. A multi-
value predicate of the form (dept, date, item_class) > (10
"06/01/95", 20) gets transformed to:

(dept=10 and date="06/01/95 " and item_class>20)
OR (dept=10 and date>"06/01/95")
OR (dept>10y

These predicates can be used by MDAM as will be
discussed under General OR Optimization. Since the
multi-value predicate has been converted to single-value
predicates, they now can be combined with ‘other single-
valued predicates.

General OR Optimization

One of the most, powerful aspects of MDAM is that it
supports predlcatcs with any combination of ORs and
ANDs. This is accomplished by associating the
predicates with different predicate sets in a variant of
disjunictive normal form. IN lists are treated as a group.
Therefore, the resulting predicate sets are not truly in
disjunctive normal form. We will call each predicate set
a disjunct. So let us take -the following complex
expression as an example:

((1tcm class=10 and date between "06/04/95" and
06/25/95) OR dept IN (2, 4, 5))
and
((dept=4 and item_class=5) OR
(item_class IN:(5,10) and (date="06/04/95" OR
dept=2)))

The above expression will have its predicates associated

with the following disjuncts:

(dept=4 and date between "06/04/95" and "06/25/95"
and item_class=10 and item_class=5)
OR (date between "06/04/95" and "06/25/95" and
date="06/04/95" and item_class=10 and
item_class IN (5,10)) '
OR (dept=2 and date between "06/04/95" and "06/25/95"
and item_class=10 and item_class IN (5,10))
OR (dept IN (2,4,5) and dept=4 and item_class=5)
OR (dept IN (2,4,5) and date="06/04/95"

715

and item_class IN (5,10)
OR (dept IN(2,4,5) and dept=2 and item_q class IN (5,10)

As you can see, the above disjuncts contain IN lists,
which are actually OR expressions. So the expression
which is finally processed is not truly in disjunctive
normal form. -MDAM essentially retrieves-a UNION of
the results of each disjunct to satisfy the query.

Why did we take such a complex expression as an
example -- it does not look like one any human would
code. When queries are generated by tools and/or-queries
are made against views with. predicates and/or
parameters or host variables are used -complex
expressions that contain many redundant predicates can
be generated. We -cannot always ask the user to simplify
the query. The main reason though is- to demonsirate
how MDAM can handle even complcx expressions such
as the one above. _

The next two sections will show how MDAM eliminates
redundant predicates and does duplicate elimination
before any data is read. ..

Elimination of Redundant Predicates

We will put the previous example 'of disjuncts - into
tabular form in table 1 to make it more understandable

i

After values are assigned to parémetcrs and host
variables, MDAM resolves expressions and then
eliminates any redundant predicates. ;

MDAM eliminates the redundant predicates in each of
the disjuncts. In the first disjunct for item_class it finds
two conflicting predicates. Item_class cannot be 10 and
5 at the same time. Therefore, this disjunct will not
qualify any rows and will result in an empty set. So
MDAM ehmmates that disjunct altogether '

For the second disjunct ‘it picks the predicate
date="06/04/95" over the date range and Item_class=10
since & row with Item_class=5 will niot qualify. It also
finds that there is no predicaté specified for dept and it
assumes a range predicate on the column of the' form
>=MIN_VALUE and <=MAX_VALUE (>=lo & <=hi
are used in the following examples 1o mean -the same
thmg)

ter procéssing each disjunct similarly, it computes the
followmg ‘disjuncts as shown in table 2:

Date Item_Class

Disjunct llept : Date ‘ Item Class
1 =4 >="06/04/95" | =10& =5
& '
<="06/25/95" .
2 >="06/04/95" | =10 &
& e (=5 or =10)
1 <="06/25/95" :
&
| ="06/04/95" :
3 =2 >= "06/04/95" |'=10 &
& (=5 or=10)
<= "06/25/95"
4 (=2 o0r=4 ’ =5 0 ¥
or =5) :
& =4
5 (=2or=4 ="06/04/95" | =5or=10
or=5) - ' ‘
6 (=2 or=4 =5 or =10
or =5)
&=2
Table 1

716

Disjunct: | Dept *
2 |>=lo& ="06/04/95" | =10
3 | =2 | >= "06/04195" | =10
1 | &
| <="06125/95"
4 =4 | >=lo & <=hi =
5 (=20r=4 | ="06/0405" | =50r=10
or =5)
6 =2 =5 or =10
Table 2

Note. that the first disjunct no longer appears in the list of
disjuncts. Since item_class cannot be both = 5 and = =10 it
is completely eliminated.

Duplicate Elimination

MDAM removes duplicates before reading the data, so it
does mot have to do any post read operations to
accomplish duplicate.. elimination (a- common problem
with OR optimization). -

MDAM combines overlapping ranges among the
disjuncts and separates the disjuncts into non-

overlapping accesses. So the disjuncts shown in table 2 ’

are transformed into the following set of retrievals:

Retrieval Dept Date Item_ Class
| 1 <2 ="06/04/95" =10

2 =2 <"06/04/95" =5 of =10

3 1=2 >="06/04/95" | =10

&
‘ <="06/25/95"

4 =2 | 5"06r2505" | =5 or =10

5 >2 & <4 ="06/04/95" =10

6 =4 "]<"06/0405" | =

7 =4 ="06/04/95" | =5 or=10

8 =4 >"06/04/95" =5

9 =5 . | ="06/04/95" =

10. |= | ="06/04/95" . | =10

11 1.>5 ="06/04/95" .| =10

Table 3

This set of retrievals (shown in table 3), cannot réturh
duplicate rows. It eliminates the overhead. of reading
duplicate rows, which would have been incurred by: the
query had it used the disjuncts in the form shown in table
2. Also, then there is no overhead incurred to remove the
duplicates after reading.

Maintenance of Index Order

In .the process of creating non-overlappmg disjuncts
MDAM orders the rétrievals, as you can see in the table,
in the order of the index being accessed. The order may
be ascending or descending. That is, MDAM maintains
‘the index order even if it were reading the index
backwards to satisfy the ordering requirements for the
query to avoid a sort.

Sparse versus Dense

When range predicates exist for leading key columns (or
" there are no predicates available for. these key ‘colutnns)
MDAM must go through the mdex and locate each value

in the range. It does this in one of two possible ways,

depending on whether a column is sparse or dense.

A dense key column is one which has all (or almost all) .

of the possible values for the column. If a column has
100 unique values and the column ranges from 0 to 99,
then this column is dense. -

717

When a dense column is recognized then MDAM only
has to-add 1 to the previous value, and look for any
values that satisfy the predicates for the remaining key
columns. This was demonstrated by the example under
the section: Missing Predicates. This method will adapt
to the actual values found in the database, and switch to
the sparse method if it doesn't find that data is actually
dense.

A column is recognized as sparse if it is missing at least
‘10 percent of its possible values. MDAM treats a sparse
column differently than a dense one. Using the present
key value it probes to find the next value in the index for
this column. This value is inserted as a key value for that
column and the required data is retrieved. An example
of a sparse key column was the date column that had four
non-consecutive values for the range specified. Access
based on the sparse method was demonstrated by the
example under the section Intervening Range Predicates.
An example of a dens¢ key column was the dept column
with 100 values from 1 to 100,

Beneﬁts

As . mentioned in the introduction and demonstrated in
the paper, the benefits of MDAM can be substantial for a
multitude of queries. this is specially the case for large
(GB to TB. size) databases designed to be accessed by
multidimensional queties.

The following section shows how MDAM on B-Trees is
an improvement oyer hashed based databases.

Hashing vs. ,B“-,”I‘ree” ‘

Even after démonstrating that B-Trees can after all be
used efficiently for multidimensional access in large
DSS, some may suggest that a hashed file organization is
still better than B-Tree structures for large scale DSS. B-
Tfees have many advantages over hashed structures:

o B_Trees ean handle ‘inserts and set updates better
' than.hashed‘structugés can.

e With many hashed structures all tables have to be
spread equally over available disk storage. This
_creates a problem "in a constantly growing
‘environment = where frequent and massive
reorganization may be necessary to re-distribute data
.across a larger number of disks. Most of the
implementations today render the database
unavailable during such re-organizations. With
range partinomng of B-Tree structures there is a lot

* - of flexibility in how data is spread across available

disks. Incremental growth in the database can be
accommodated by various partition management
utilities that allow partition splits, merges additions,
deletions, movement, and changes in partition
boundaries. All this re-organization can be done on-
line while the system is available 24 x 7.

e The chosen index better be a good one to yield a
balanced hashed organization. Otherwise, there is a
problem in managing data distribution evenly. With
B-Trees, partition boundaries-can be specified based
on the data distribution across key values to achieve
balanced distribution.

¢ Queries needing sets of data that can be retrieved
contiguously benefit from a B-Tree organization.
MDAM extends this benefit-to a broad class of
queries. Bulkk [/O, pre-fetch, and buffering
capabilities can-.be used to take advantage of
accessing clustered data with fewer I/Os.

e All B-Tree queries do not have to be executed in
parallel if they can be satisfied by accessing a single
partition. Sometimes only a few partitions need be
accessed to satisfy the query instead of ‘the entire
table. Between- the clustered bulk /O benefit

mentioned above and the reduction in partitions:

accessed, less CPU and disk resources are necessary
to satisfy the query workload on the system --- a
price/performance advantage.

e Hashed organizations have the problem that
multidimensional queries with predicates missing, or
range predicates on leading “or intervening key
columns, will result in full table scans which are
resource intensive. '

Hashed structures do have a perceived benefit over B-
Trees in the automatic balancing of partitions across
disks, as long as a good index is chosen. They are also
perceived as promoting parallelism. (Note that one of the
bullets above discusses the benefit of not having to be
parallel all the time.) However MDAM and B-Trees can
help provide the same benefits, but do it more efficiently.

There are two types of database organization on B-Trees
that can provide this type of benefit. Both allow a
leftmost column added to the primary index. ‘

¢ The leftmost column added to the primary index is
used to "hash” distribute the rows of a table. This
can be an existing column of low unique entry count
or an artificial column created by hashing columns

718

of the table. The table can be partitioned on this
column,

e The leftmost column can be assigned a value in a
round robin fashion so that each row falls into a
different partition. This will ensure even
distribution of the data across partitions.

So we can achieve a balanced "hashed" distribution of
rows across B-Tree partitions for ease of partition
management. This is an improvement over the perceived -
advantage of hashed structures over B-Trees. So how do
we access this table with a leftmost column that will
probably have no predicates for it? MDAM will treat this
column for -all queries as a column with missing
predicates and will deal with it as demonstrated above.
The key thea is to have a low number of unique values
per partition for the leftmost column so that the number
of probes to find the next values for it is small. At the
same time, there should be a sufficient number of values
for the column per partition, so that the partition can be
split at a later date, to accommodate a growing database.
With on-line wutilities to fe-organize the database and
manage the partitions, MDAM offers you the best of both
worlds using B-tree structures.
Performanece
The following performance figures shown in table 4
compare MDAM performance to reading the entire table
and reading through an alternate index. The tests were
run with a Wisconsin table of 75,000 records occupying
18.15 MB. The table was created with the key columns
of four, ten, twenty and onepct. The unique entry counts
for thesé columns are 4, 10, 20 and 750, The following
query was executed:

SELECT sum(uniquel) FROM k75tup WHERE
<pred>; '

<pred> was varied to be (ten=1, twenty=1 and onepct=1).
Secondary indexes were created for the columns ten,
twenty and onepct.

<pred> | Table | Secondary [MDAM | MDAM
' Scan | Index Time | Accesses | Time
Time - '
ten=1 19 secs 38.0 secs 4| 4.3secs
twenty=1 | 9 secs 26.0 secs 40 | 3.4 secs
onepct=1 | 9 secs 2.5 secs 800 | 1.6secs
Table 4 .

This simple experiment scales up to large databases. It
shows that MDAM can significantly extend the use of B-
Trees and give excellent performance.

Summary

The MDAM access method has been shown to extend the
uscfulness of the already important B-Tree index
organization. Multidimensional access using B-Trees
allows efficient clustered access to databases. Support of
columns with no predicates allows users t0 extend the
types of database design that can be used with B-Trees,
allowing extremely efficient access and maintenance.
The general processing of MDAM, allowing keyed access
of extremely complex queries involving ranges, IN lists
and arbitrary ORs allows queries to-be expressed in an
arbitrary manner, and still be executed efficiently, as
MDAM will retrieve a record only once and still
maintain index order. We have also-show the multiple
benefits of B-Trees for large databases using MDAM.

References

Bayer, R. and Schkolnick, M. "Concurrency of
Operations on B-Trees" Acta. Inf. 9 1 (1977).

Bayer, R and Unterauer, ,K. "Prefm B-trees" ACM-
TODS, Vol. 2, No. 1, March 1977.

Beckmann, N. and Kriegel, H. P. and Schneider, R. and
Seeger, B "The R*-tree: an Efficient and Robust Access
Method for Points and Rectangles". ACM-SIGMOD
1990.

Bentley J. L. "Multidimensinal ‘Binary Search Trees
Used for Associative Searching”™ Comm ACM Vol 18,
No 9, 1975.

Chang J. M. and Fu K. S. "A Dynamic Clustering
Technique for Physical Database Design" ACM-
SIGMOD 1980.

Comer, D. "The ubiquitous B-tree" ACM Computing
Surveys Vol. 11, No. 2, 1979.

Guttman, A. "R-trees: a dynamic index structure for
spatial searching” Proceedings ACM-SIGMOD Conf.,
1984. .

Held, G and Stonebraker, M "B-Trees Re-examined"
Electronics Research Laboratory University of
California, 1975.

Knuth, D. E. "The Art of Computer Programming” Vol.
3, Sorting and Searching. Addison-Wesley, Reading,
Mass., 1973.

Lomet, D. B. and Salzberg, B. "The hB-tree: a Robust
Multi-Attribute Indexing Method” ACM Trans. on
Database Systems, Vol. 15, No 4. 1989.

Nievergelt, J and Hinterberger H. "The Grid File: An
Adaptable, Symmetric Multikey File Structure” Trends
in Information Processing Systems, Proc 3rd ECI
Conference 1981.

"The K-D-B-Tree: A Search Structure
Proc.

Robinson, J. T.
for Large Multi-dimensional Dynamic Indexes"
ACM SIGMOD Conf. 1981.

Rothnie, J. B. and Lozano, T. "Attribute Based File
Organization in a Paged Memory Environment” comm
ACM, Vol. 17, No 2, Nov 1974.

Seeger, B. and Kriegel, H. P. "The Buddy-tree: an
Efficient and Robust, Access Method. for Spatial Data
Base Systems" Proc. 16th Int. Conf. on Very Large Data
Bases, 1990.

Sellis, T. and Rossopoulos, N. and Faloutsos, C. "The
R+ Tree: a Dynamic Index for Multidimensional
Objects” Proc. 13the Int. Conf. on Very Large Data
Bases, 1987.

719

