
Efficient Search of Multidimensional B-Trees

Harry Leslie Rohit Jain Dave Birdsall Hedieh Yaghmai

Tandem Computers Incorporated
10100 N. Tantau Ave., LOC 251-05

Cupertino, CA 950142542
{ leslie-harry, jain-rohit, birdsall-dave, yaghmai-hedieh} Q tan&m.com

Abstract

Data in relational databases is frequently stored and
retrieved using B-Trees. In &cis,ion isugprt
applications the key of the B-Tree frequently involves the
concatenation of several fields of the relationdl’ table.
During retrieval, it is desirable to be able to access a
small subset of the table based’ on partial key
information, where some fields of the key may either not
be present, involve ranges, or lists ‘of values. It is also
advantageous to altow. this type, of access-with gen&il
expressions involving any combination of disjuncts on
key columns. This paper &scribes a method whereby B-
Trees can be eficiently used to retrieve small subsets,
thus avoiding large scans of potentially huge tables.
Another benefit is the ability of this method to reduce the
need for additional secondary indexes, thus saving
space, maintenance cost, and random accesses.

Introduction
In the last few years various factors have resulted in
Decision Support Systems (DSS) gaining popularity.
Some of these factors have been:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Procaedinge of the Net VLDB Conference
Zurich, Switzerland, 1QDS

A downward trend in hardware server and disk
COStAS.

The evolution of database products, which are giving
improved paformance oh an increasing number of
hardware platforms.

Use of information for competitive advantage. This
trend has been. prompt&,by a &ire TV provide
higher levels of service to customers or improve
targeting of customers .to draw them away Ikom
increased .eompetition. This has manifested itself in
promotions such as the freqwnt flyer or buyer
programs. Also, information ‘is being used to
d&ease costs such as store inventory, etc.

The advantage of seeing more and more detail
combined with improved performance has prompted
many users to move to DSS platforms. If the
movement of men’s jeans off the shelf were being
monitored before, now it is the size 32, black, brand
X, style Y, men’s jeans that is under close scrutiny.
AIso, the time dimension being considered has
slowly shrunk from quarterly trends to monthly,
weekly, and now daily trends. In a word, micro-
marketing is in vogue. Multidimensional databases
that hosted such DSS often cannot support such
level of detail.

Increased availability of client tools that provide
easier access to the information along with desktop
tds that facilitate the further filtering,
summarization, and present&m of the information.
Multidimensional front end tooIs are also gaining
popularity that provide the capabilities previously
available in multidimensional databases, but now are
targeted towards large relational data warehouses.

710

The above is by no means an exhaustive list, but it is a
reality today that Decision Support Systems are being
implemented by many DP shops and the sixes of DSS
databases often dwarf the size of the largest operational
databases. This trend can be substantiated by many
studies done by firms such as the Gartner Group and the
Meta Group.

Along with the above trend has been the increase in
dimemionul modeling. This is the design of the database
based on key dimensions of ‘the business. These
dimensions may ,be time, geography, product, and so
forth. Epically such dimensions are used to query these
large databases first for smmnary information and then
for detail information as the user drills down to
increasing levels of detail. Summary information
provides high level trends, but many’ important insights
offering competitive advantage can only, be discovered
from the details.

When providing the criteria for these dimensions in a
query, a user may or may not provide values for all the
dimensions. So for a Sales table with dimensions such as
Date, Store and Item the user may want sales. for a week
for an item across all stores. No matching criteria may
be provided for the Store dimension, or for a particular
dimension the user may provi& a set of i7alues. So ‘the
user may want information for 4 weeks of sales for a
group of stores for certain items. The criteria specified
for these dimensions may vary considerably from one
query to another based on the type of user. A buyer for a
large retailer has different objectives from a person in the
marketing or inventory control departments accessing the
same database. There is also a difference between users
consistently submitting similar queries for operational
decisions versus those users who are looking for strategic
information. The latter type of user is data mining or
data surfing, or in other words looking for some
correlation or trend which may not be obvious from
standard reports, and is best found by detailed
investigation of anomalies. All of this leads to a
challenge in in&x &sign. When the database is very
large (100 GB to Terabytes)’ this may mean alternate
indexes are prohibitively expensive. So one has to rely
on a single in&x (the B-tree clustering in&x) to meet
the requirements of these varied demands.

Typically most DBMSs have to scan the whole table
when faced with the kind of queries mentioned above --
with a set of values specified for multiple columns of the
in&x, ranges on intervening columns, or no predicates
specified for leading or intervening key columns.

This is where the MultiDimensional Access Method
(MDAM) steps in. It is a new access method that works
efficiently with such multidimensional access against
standard B-Tree based tables.

Multidimensional B-Trees
A multidimensional B-Tree is one that is defined on
multiple columns (dimensions).

Subsets of data can be read efficiently from a B-Tree
becquy $ey qre clustered according to the values
contains in their key columns. This is because records
imaining stpxssive lgey values are stored in one or
more blocks of the B-Tree. So, many records are read by
a shigle’access of these contiguous blocks.

In ,figure 1 below a B-Tree is represented with three
dimensions (or columns). The,!@.l number of rows in
this table is 27. Each dim&ion has.three values. Note
that for dimension 2 each- value is repeated for each value
qf dimension 1. The first (smallest labeled a) shaded
area shows how much is retrieved for an equal predicate
on all three dimensions (dimenisiori~l ‘= 1 and
dimension-2 = 2 and dimension-3 = 2). The second
shaded area (b) shows how much is retrieved for equal
predicates on the first two dimensions (dimension-l = 2
and dimension~2 = 2). and the third shaded area (c)
shows how much is retrieved for an equal predicate on
dimension 1 (dimension-l = 3).,,

dimension 1 dimension 2 d+ension3

0

Figure 1

Figure 2 shows the same B-Tree, but shows what is
retrieved when there is only a predicate on the third
column (dimension3 = 2).

711

In this case (dimension,3 = 2) the same value for
dimension~3 exists for each value of dimension-2 (1, 2
and 3) and each value of dimension-l (1,2 and 3).

MDAM can do this type of access (with a predicate only
on the third dimension) using an index, whereas other
data base management systems using B-Trees would
have to read the entire table or require ti secondary in&x.

dimension 1 dimension 2 dimension 3

Pigure 2

Multidimensional Access to B-Trees
Much has been written over the years about B-Trees.
Almost all vendors implement them as the primary type
of in&x structure. They perform well for a large variety
of applications. The updating, balancing, caching, and
management of B-Trees have well understood solutions.
B-Trees have been the foundation ‘of very large On-Line
Transaction Pr&essiug (OLTP) systems and have
facilitated very high transaction processing rates, ,as
demonstrated by various TPC-C benchmarks. These
benchmarks have demonstrated that B-Trees support
highly available, scalable, distributed transaction
processing applications.

However multidimensional access has generally been leti
to new types of ind@hg methods rather than leveraging
the existing and useful B-J”. . *.

As shown in this paper multidimensional access of
existing B-Trees can be efficient for a large range of
multidimensional queries. B-Trees have already proven
their usefulness in dealing with large volumes of updates
across large databases. _!

Tandem allows use of B-Trees for both the base table and
secondary indexes. In the base table the leaf nodes are
the data blocks that contain the data records. In a

samdaty index, each record in the leaf node block
contains primary index columns that identify an
individual data record in the base table. Both the base
table and secondary indexes cau be range partitioned by
the leading key columns of the primary and secondary
index respectively.

MDAM makes existing B-Tree indexes much more
useful by extending their use to a broad range of queries
that can use them efficiently, thus improving response
time and reducing the need for additional secondary
iu*es. When the need for secondary indexes is reduced
the disk requirements for large dat&ses are also
R!dUCed. In addition the choices for database
organization are expanded. (i.e. Columns of the base
table that do not contain mauy unique values and are not
oftea referenced in queries can now be used as leading
key columns of an index.)

This paper demonstrates how MDAM exploits existing
B-Tree indexes for many more queries far more
efficiently than previous B-Tree access methods.

Major Features ofMDAM
Earlier discussipns. alludq to some of MDAM’s
advantages. Th$y are yqma&ed here:

Range predicates on leadiug or intervening key
cohmlns.

Missing predicates on leading or intervening key
cohnnns.

IN lists-on multiple key cohimns.

NOT equal (0) predicates.

Multivalued predicates.

Elimination of redundant predicates.

Elimination of empty sets.

Pre-execution duplicate elimination.

Preserving in&x order for rows retrieved.

Sparse or Dense Access

The significant point is that while providing all these
capabilities MDAM reads the minimal set of records
required to process the query. Also, it transforms the
original set of predicates into predicates on disjoint

712

ranges. This avoids the overhead of reading the same
row many times and then having to eliminate duplicates.
The ranges are ordered according to the order of the
index. So MDAM maintains the order of the rows
returned to that of the in&x. This facilitates efficient
grouping , merge joins, and reduces the sorts sometimes
necessary to order the data,

dept.=lO, date=“O6/04/95”, item-class=20, store = 250

Each of the above features is discussed below. The table
used to illustrate the features L:

We call this retrieval of a set of rows an access. After it
gets all the rows that satisfy such an access, it searches
for the next value of date for dept 10 which is greater
than 06/04/95. We call this search a probe. It fmds
06/11/95. Next it retrieves all rows that are qualiied by
the following set of predicates:

dept=lO, date=“O6/1 l/95”, item&tss=20, store=250
SALES with the columns:

l dept

’ date

0 item-class
l StOE

l item
l total-sales

In this manner, it continues processing the next value for
date in the database and so on,

With a key on columns dept., date, item&tss, and store.

Even when a large number of rows are being processed
(often thousands to millions), the overhead of each access
to find the next value for the column in the database, as
illustrated in the above example, is minuscule. If there
are many item classes and stores MDAM will have
avoided accessing thousands, if not millions, of rows.

Intervening Range Predicates
An intervening range predicate ,is a range predicate
specifkd on a leading or intermediate column of an
in&x. Columns preceding and following thii column
may have equality predicates .specitied on them. An
example of a query with such predicates is:

SELECT date, sum(total~sales)
FROM sales

WHERE dept=lO

No access was required to another dimension table to
determine all the possible values for date in that range
and then perform a join to accomplish the same thing.
Besides, the values resulting from such a table may be all
possible values for the column, whereas the database may
have only a subset of such values. Because MDAM
maintains the order of the index, the aggregation
spe4ified in the query can be performed very efficiently,
without a sort being necessary.

and date between “06/01/95” and “06/30/95”
and item&ss = 20
and store = 250

Missing Key Predicate

GROUP BY dept, date;

713

When no predicates have been slx+kd for a leading or
intervening hey Column, MDAM can still use the
subsequent columns for keyed access. The following
query is an example:

Normally the predicates on column item-class and store
cannot be used as keys by most DBMS because of the
intervening range predicate on date. However MDAM
allows the use of. all four hey columns.

MDAM processes range predicate8 b$ stepping through
the values, existing in the table, for, the column on which
the range has been spe4Sed. Assume that the values for
date in the database between 06/01/95 and 06/30/95 are
06/04/95,06/11/95,06/18/95, and 06/25/95.

MDAM frost searches for the value a date greater than or
equal to 06/01/95 and less than or equal to 06/30/95
where dept equals 10. It finds the value 06/04/95. Then
it retrieves all rows that are qualified by the following set
of predicates:

Note that no predicate has been provided for the fust key
cohmm dept., Most DBMSs would not be able to use’ the
in&x for keyed access and would have toresort to a full
table scan for such a query. However, MDAM can
handle this query effrcietly. , It treats the missing
predicate for dept ,as an implied range of MIN-VALUE
to MAX-VALUB (note that this includes NULL values).

SELECT date, sum(total~ales)
FROM sales

date between ‘Ufj/O1/95” and “06/30/95”
and itemclass = 20
and store*250

GROUP BY dept, date;

These are respectively the minimum and maximum
permissible values supported for the datatype of the
missing key column.

So let us assume that the values for ,the column dept in
the table range from 1 through 100. MDAM first
searches for a dept greater than MIN_vALuE, It fmds
the value 1. Next it finds the first value for date as
describe above and then uses the following set of
predicates for its fust access:

dept=l, date=“06/04/95”, item-classz20, store-250

After retrieving the rows for this access, it will vary the
value for the column date, as discussed earlier, to do the
following accesses against the table:

deptzl, date=“O6/11/95”, item&iss=20, store=250
depbl, date=“O6/18/95”, item~class=2O, store=250
dept~l, date=“O@25/95”, item&ss=20, store=250

Having covered the range of dates, it then increments the
previous value for dept by 1 to do the following accesses,
starting with the first date value ‘again: 1

dept=2, date=“O6/04/95”, item_class=20, store=250
dq~td, date="o6/11/95", item&tss=20, store=250
dept=I& date=“o6/1 g/95”, item&ss=20, store=250
deptd, date=“O6/25/95”, item&ss=2O, store=250

This results in 4 probes per dept for 100 departments,
for a total of 400 accesses, each of them requiring a probe
to determine the next date value to retrieve. Hxtra probes
are not required to retrieve values for the column dept.,
other than to get the starting value because thii is a dense
column. Dense columns do not need to be probed to
determine their next value. (see Sparse vs Dense later in
this paper.)

IN Lists
IN liits are essentially IN predicates specified for a key
ColUmn. The preditite could also be of the form
item~class=20 OR itemAass=35 OR itemAass=fiO . . .
Such a predicate is also considered an IN list. So let us
see how MDAM processes IN lists using the following
query as an example:

SE!ECT date, item:class, store, sum(total~sales)
FROM sales

WHERE
date between ‘W/01/95” and “06/30/95”

and item-class IN (20,35,50)
and store IN (200,250)

GROUP BY de@, date, item&ss, store;

Key columns dept and date are handled as discussed
before. However, instead of using just the predicates
itemAass=20 and store=250 with each access, multiple
accesses are done for each value provided in the IN list
for these columns. So the following access in the
previous example:

dept-1, date=“O6/04/95”, item~class=20, store=250

is done for each value of item-class. For each value of
item&ss, each value of store results in an access as
well. so the following accesses are done for the first
values of dept and date:

dept=l, date=“O6/04/95”, item&Lss=20, store=200
deptl, date=“O6/04/95”, item-class=20, store=250
dept=l, date=“O6/04/95”, item-class=35, store=200
dept~l, date=“06/04/95”, itemAass=35, store=250
dept=l, date=“O6/04/95”, item&ss=50, store=200
depbl, date=“OfXW95”, item,class=50, store=250

Since the values for iten@ass and store have been
provided in the query, no extra accesses are required
against ‘the table to determine their next values.

During’all of this MD&4 preserves the original order of
the index, making the computation of ‘aggregates very
efficient. Materialization of a hashed or sorted
intermediate is not required for forming groups. --

For the above query MDAM would perform 2400
accesses. If Sales is a small table the SQL optimizer
might decide to just read the entire table. When there are
thousands or millions of rows qualifying for each access,
however, MDAM may prove to be very efficient
considering the rows it does not have to access. The
mwii iesultiig’fr~ tlje 2400 accesses may be a small
subr+t, of the entire table and’ may,result in the query
being executed in minutes instead of,the hours it might
take to do a full table scan. Note, that since the rows to
be read for each access are, clustered, MDAM can read
these at very high scan rates using very efficient bulk I/Q,
pre-fetch, and virtual’buffering capabilities.

Tables on Tandem systems are partitioned on a part or all
of the primary or clustering key columns. Typically,
DSS queries involve predicates on the key columns, with
one or more of the key columns having range or In list
predicates.

If the same query uses paraRe execution, the 2400 access
may not seem that confounding. If the sales table

714

contains 100 GB spread across 50 partitions, and is
partitioned by dept, each partition is accessed by an
executor server process in parallel. Therefore the
number of acuxses per process is now 48 (2400/50).
Since each partition contains 2GB, and we are accessing
only a small part of each partition, this query may
actually be executed in seconds.

“NOT =” Pddicates
Most DBMSs would not consider “NOT =” predicates to
be very useful for keyed access. Predicates of the form
NOT IN (3, 5, 8) which translates to NOT = 3 AND
NOT = 5 AND NOT = 8 also fall into this category.
MDAM can use such predicates for keyed access as well,
Their efficiency depends on the selectivity of the cohmm
or the number of unique values in the table for the
column. Consider a predicate of the form:

WHERE dept NOT IN (3,5,8)

Now, if there are 100 departments (as we assumed
before) use of this as a key would not have much benefit
because it eliminates only 3% of the de&s. However, if
there are only 10 departments, the impact on the
execution time of using this predicate k a .mduction of
about 30%. The lower the number of unique values for
the column and the higher the number of values in such a
NOT list specifii by a query the more the benefit from
MDAM. MDAM uses the “NOT = predicate by
transforming it into a set of ORed predicates. So dept
NOT=3 is transformed into dept c 3 OR dept > 3. For
the query specified above the predicateis transformed to:

WHERE! (dept<3 OR dept >3)
and (dept<5 OR dept>5).
and (dept<8 OR dept>8)

MDAM will access departments 1, 2, 4, 6, 7, 9 and 10.
Not doing the access for departments 3, 4 and 8 can
reduce the time needed to complete the query versus
making a full table scan.

Multi-Valued Predicates
Multi-valued predicates (or in SQL92 terminology ‘Row
Value Constructors”) can also be ‘used by MDAM. A
predicate of the form (dept, date, item&ss ,store) ‘= (10,
“06/04/95”, 20, 250) is considered the equivalent of
equality predicates on each of the ‘columns in the
following form:

dept= 10

and date = “06/04/95”
and item-class = 20
and store = 250

Such a multi-value predicate is processed as discussed in
earlier sections. However, when a range is expressed in a
multi-value predicate (using one of the operators >, >=,
c, c=) the transformation is quite different. A multi-
value predicate of the form (dept, date, item-class) > (10,
“06/01/95”, 20) gets transformed to:

(dept=lO and date=“O6/01/95” and item&tss>20)
OR (dept=lO and date>“O6/01/95”)
OR (depbl0)’

These predicates can be used by MDAM as will be
discussed under General OR Optimization. Since the
multi-value predicate has been converted to singlevalue
predicates, they now can be combined with *other single
valued predicates.

General OR Optimization
One of the most.. powerb~l aspects of MDAM is that it
supports predicates with any combination of ORs and

This is accomplished by associating the
ales &with different predicate sets in a variant of
disjunctive normal form. IN liits are treated as a group.
Therefore, the resulting predicate sets are not truly in
disjunctive normal form. We .will call each predicate set
a disjunct. So let us take the following complex
expression as an example:

((item+ss=lO and date between “06/04/95” and
06/25/95) OR dept IN (2,4,5))

and
((depth and item+ss=5) OR ~.
(item-class IN(5,lO) and (date=“O6/04/95” OR

dw=W

The above expression will have its predicates associated
with the following disjuncts:

(dept=4 and date between “06/04/95” and “06/25/95”
and item~class=lO and item&ss=5)

OR (date between “06/04/95” and “06/25/95” and
date=“06/04/95” and item&rss=lO and
item-class IN (5,lO))

OR (dept~2 and date between “06/04/95” and “06/25/95”
and item-class=10 and item&tss IN (5,lO))

OR (dept IN (2,4,5) and dept=4 and item&ss=5)
OR (dept IN (2,4,5) and date=“O6/04/95”

715

and item-class IN (5,lO)
OR (dept IN(2,4,5) and dept=2 and item-class IN ($10))

As you can see, the above disjuncts contain IN lists,
which are actually OR expressions. So the expression
which is finally processed is not truly. in disjunctive
normal form. &lDAM essentially retrieves a UNION of
the results of each disjunct to satisfy the query.

Why did we take such a complex expression as an
example -- it does not look like one any human would
code. When queries are generated by tools and/or queries
are made against views with. predicates and/or
parameters or host variables are used complex
expressions that contain mauy redundant predicates can
be generated. We.cannot always ask the user to simplify
the query. The main reason though is to demonstrate
how MDAM can handle even complexexpressions such
as the one above.

The next two sections will show how MDAM eliminatt
redundant predicates and does duplicate elimination
beforeanydataisread. ,I ./,

Elimination of Redundant Predicates .I :.
I

We will put the previous, example of disjuncts into
tabdar form in table 1 to make it more understandable:

Afkz values are assigned to parameters and host
variables, MDAM resolves expressions and then
eliminates any redundant predicates.

MDAM eliminates the redundant predicates in each of
the disjuncts. In the first disjunct for item&tss it finds
two conflicting predicates. Item-class cannot be 10 and
5 at the same time. Therefore, this disjunct will not
qualify auy rows and will ‘result in an empty set. So
MDAM eliminates that disjunct altogether ‘.

;
For the second disjunct ‘it picks the predicate
date=“O6104/95” o+ek the date range and Item&ss=lO
since a row with Item~class~5 will not qualii. It also
finds that there is no prodica~!’ specifti for dept and it
assumes a range~predicate on the c&mm of the form
>=MIN-VALIlR and <=MAX-VALUl3 (>=lo & <=hi
are used in the following examples to mean the same
thing).

Aftfqrocdsing each disjuact similarly, it computes the
followingdisjuncts as shown in table 2:

j .f.
&j-t .? D&& ” Date 1 ItemJJass

2 ‘&lo & =“06/04/95” 1 =lO
-<=hi.. i ,.

3 =2 >= “06/04~95” =lO . ,”
& _ ’ <= “06225l95” , 4 4, * , >&lo $&hi =5

5 (=2o&4 &xj/&/9s’ ’ =5 ()r=lO
or =5) I I

6 =2 5” 1 r5or=lO

Table 2

Note that the first disjunct no longer appears in the list of
disjuncts. Since itemAass cannot be both = 5 and =lO it
is completely eliminated.

Duplicate Elimipation
&lDAM removes du&.&s ,before,re.ading the data, so it
does not have to do,*any post read operations to
accomplish dupl@t~.ehm&tion (a common; problem
with OR optimi&on).

Table 1 _,, MDAM combines overlapping ranges among the
disjmcts and separates the disjuncts into non-

716

overlapping accesses. So the disjuncts shown in table 2
are transformed into the following set of retrievals:

Retrieval 1 Dept 1 Date I Item~class
-1 In 1 =“06/04~5” 1 =lO I 2 1 =2 r 1 <“06/04/95” 1 3 or =lO
3 I =2 I >=“06/04/95” I =lO

I
<=“06/25/95”

4 =2 .90&5/95ll ‘=5or=lO _
5 >2&<4 =“46104195” =lO

,6 ,=4 <"06/04/95" =5
7. =4 ~“06;1o;;ilps’ ,‘: “;J&=l()
8 =4 >“06/04/95” =5

Table 3

This set of retrievals (shown in table 3), cannot return
duplicate rows. It eliminates fhe overhead of reading
duplicate rows, which would have’been incurredby- the
query had it used the disjuncts in the form shown in table
2. Also, then there is no overhead incurred to remove the
duplicates after reading.

Maiqte~~ce of Index Order i
In .the process of creating non-overlapping disjuncts
MDAM orders the retrievals, as you can see in the table,
in the order of the index being access& The order may
be ascending or descending. That is, MDAM maintains
the index order even if it were reading the index
backwards to satisfy the ordering requirements for the
query to avoid a sort

Sparse versus Dense 1
When range predicates exist for leading key columns (or

’ there are no medicates available foVhese key -cohmms)
MDAM must go through the index and locate each value
in the range. It does Thai in one of two possible ways,
depending on whether a column is sparse or dense. \ ‘,.
A dense key column is one which has all (or almost all) :
of tlie Ipossible values for the column. If a c&mu has
100 unique values and the column ranges from 0 to 99,
then this cohnnn is dense.

When a dense column is recognized then MDAM only
has to add 1 to the previous value, and look for any
value3 that satisfy the predicates for ‘the mmaining key
~01~s. This was demonstrated by the example under
the section Missing predicates. This method will adapt
to the actual values found in the database, and switch to
the sparse method if it doesn’t find that data ,is actually
dense.

I

A colti is recognized as sparse if it is missing at least
10 percent of its possible values. MDAM treatsa sparse
colti differently than a dense one. Using the present
key value it probes to find the next value in the in&x for
this column. Thii value is inserted as a key value for that
column and the required data is retrieved An example
of a sparse key column was the date cohunn that had four
non-conseclltiye values for the range specified. Access
based on the sparse method was demonstrated by the
example under the section Intervening Range Predicates.
An example of a dense key cohunn was the dept column
with 100 values from 1 to 100.

z

Benefits
As mentioned in the introduction and demonstrated in
&e paper, the benefits of MDAM can be substantial for a
multitude of querie+ this is specially the case for large
(GB$TBsize)databasesdesignedtobeaccessedby
multidimensional queries.

The following section shows how MDAM on B-Trees is
an improvement ov,er hashed based databases.

I
wing vs. ,B-Tree
Even after demonstrating that B-Trees can after all be
used efficiently for multidimensional access in large
DSS, some may suggest that a hashed file organization is
still be& thr&BiTree &uctures for large scale DSS. B-
Trees have many advantages over hashed structures:

l B-Trees can handle’&rts and set updates better
thanhashed~structures can. .’ .a

l With many hashed structures all tables have to be
spread equally over available disk storage. This
cxeates I problem in a constantly growing
environment where frequent and massive
reorganization may be necessary to redistribute data
across a larger number of disks. Most of the

‘kiiplementati6ins today render . the database
unavailable “during such re-organizations. With
range ptitiomng of B:T?ee structures there is a lot

‘I ‘of flexibility in h’ow data is spread across available

717

disks. Incremental growth in the database can be
acwmmodatc4l by various partition management
utilities that allow partition splits, merges additions,
deletions, movement, and changes in partition
boundaries. All this reorganization can be done on-
line while the system is available 24 x 7.

The chosen in&x better be a good one to yield a
balanced hashed organization. Otherwise, there is a
problem in managing data distribution evenly. With
B-Trees, partition boundaries can be specified based
on the data distribution across key values to achieve
balanced distribution.

Queries needing sets of data that can be retrieved
contiguously benefit from a B-Tree organization.
MDAM extends this benefit to a broad class of
queries. Bulk I/O, pm-fetch, and buffering
capabilities can *be used to take advantage of
accessing clustered data with fewer I/OS.

All B-Tree queries do not have to be executed in
parallel if they can be satisfied by accessing a single
partition. Sometimes only a few partitions need be
accessed to satisfy the query instead of the entire
table. Between the clustered bulk I/O benefit
mentioned above and the reduction in partitions
accessed, less CPU and disk resources are necessary
to satisfy the query workload on’ the system -- a
pricdperformance advantage.

Hashed organizations have the problem that
multidimensional queries with predicates missing, or
range predicates on leading I or intervening key
columns, will result in full table scans which are
resource intensive.

Hashed structures do have a perceived benefit ‘over B-
Trees in the automatic balancing of partitions across
disks, as long as a good in&x is chosen. They are also
perceived as promoting parallel+ (Note that one of the
bullets above discusses the benefit of not having to be
parallel all the time.) However I&AM and B-Trees can
help provide the same benefits, but do it more efficiently.

There are two types of database organization on B-Trees
that can provide thii type of benefit. Both allow a
leftmost column added to the, primary index. I,

l The leftmost column added to the primary in&x is
used to “hash” distribute the rows of a table. This
can be an existing column of low unique entry count
or an artificial column created by hashing ‘columns

of the table. The table can be partitioned on this
column.

l The leftmost column can be assigned a value in a
round robin fashion so that each row falls into a
different partition. This will ensure even
distribution of the data across partitions.

So we can achieve a balanced “hashed” distribution of
rows across B-Tree partitions for ease of partition
management. Thii is an improvement over the perceived
advantage of hashed structures over B-Trees. So how do
we access this table with a leftmost ‘column that will
probably have no predicates for it? MDAM will treat this
column for all queries as a cohmm -with missing
predicates and will deal with it as demonstrated above.
The key then is to have a low number of unique values
per partition for the leftmost column so that the number
of probes to fmd the next values for it is smaIl. At the
same time, there should be a sufficient number of values
for the column per partition, so that the partition cau be
split at a later date, to accommodate a growing database.
With on-line utilities to m-organize the database and
manage the%partitions,.MDAM offers you the best of both
worlds using B-tree structures.
jl

Performawe
The following performance figures shown in table 4
compare MDAM performance to reading the entire table
and reading through an alternate in&x. The tests were
run with a Wisconsin table of 75,OtXl records occupying
18.15 MB. The table was created with the key columns
of four, ten, twenty and onepct. The unique entry counts
for these columns are 4,10,20 and 750. The following
query was executetk

SELZT sum(unique1) FROM k75tnp WHE!RE
<pred>;

cpr& was varied to be (ten=l, twenty=1 and onepct=l).
Secondary indexes were created for the columns ten,
twenty and onepct.

<pied> Table sedonaaij .mAM MDAM
Scan. IndexTime Accesses Time
Time

ten=1 . 9secs 38.0 sea 4 4.3 sea
twenty=1 9 sets 24.0 sea 40 3.4 se42
onepctil 9secs ,2.5 seca 800 1.6 sea

Table 4

718

This simple experiment scales up to large databases. It
shows that MDAM can significantly extend the use of B-
Trees and give excellent performance.

summary
The MDAM access method has been shown to extend the
usefulness of the already important B-Tree index
organization. Multidimensional access using B-Trees
allows efficient clustered access to databases. Support of
columns with no predicates allows users to extend the
types of database &sign that can be used with B-Trees,
allowing extremely efficient access and maintenance.
The general processing of MDAM, allowing keyed access
of extremely complex queries involving ranges, IN lists
and arbitrary ORs allows queries to,be expressed in an
arbitrary manner, and still be executed effr&ntly, as
MDAM will retrieve a record only once and still
maintain in&x order. We have alsoshow the multiple
benefits of B-Trees for large databases using MDAM.

References
Bayer, R. and Schkolnick, M. “Concurrency of
Operations on B-Trees” Acta. Inf< 9 l(l977).

Bayer, R and Unterauer,.,K. ‘Prefm B-trees” ACM-
TODS, Vol. 2, No. 1, March 1977.

Beckmann, N. and Ktiegel, H. P. and Schneider, R. and
Seeger, B “The R*-tree: an Efficient and Robust Access
Method for Points and ‘Rectangles”. ACM-SIGMOD
1990.

Bentley J. L. “Multidimensinal ,Binary Search Trees
Used for Associative Searching” Comm. ACM, Vol. 18;
No 9,1975.

Chang J. M. and Fu K. S. “A Dynamic Clustering
Technique for Physical Database Design” ACM-
SIGMOD 1980.

Comer, D. “The ubiquitous B-tree” ACM Computing
Surveys Vol. 11, No. 2,1979.

Guttman, A. “R-trees: a dynamic index structure for
spatial searching” proceediags ACM-SIGMOD Cot&,
1984.

Held, G and Stonebraker, M “B-Trees Reexamined”
Electronics Research Laboratory, University of
California, 1975.

Knuth, D. E. “The Art of Computer Programming” Vol.
3, Sorting and Searching. Addison-Wesley, Reading,
Mass., 1973.

Lomet, D. B. and Salzberg, B. “The hB-tree: a Robust
Multi-Attribute Indexing Method” ACM Trans. on
Database Systems, Vol. 15, No 4.1989.

Nievergelt, J and Hinterberger H. “The Grid File: An
Adaptable, Symmetric Multikey File Structure” Trends
in Information Processing Systems, Proc 3rd EC1
Conference 1981.

Robinson, J. T. “The K-D-B-Tree: A Search Structure
for Large Multi-dimensional Dynamic Indexes” Proc.
ACM SIGMOD Conf. 1981.

Rothnie, J. B. and Lozano, T. “Attribute Based File
Organization in a Paged Memory Environment” comm
ACM, Vol. 17, No 2, Nov 1974.

Seeger, B. and, Kriegel, H. P. “The Buddy-tree: an
Efficient, and Robust, Access Method, for Spatial Data
Base Systems” Proc. 16th Int. Conf. on Very Large Data
Bases, 1990.

Sellis, T. and Rossopoulos, N. and Faloutsos, C. “The
R+ Tree: a Dynamic Index for Multidimensional
Objects” Proc. 13the Int. Conf. on Very Large Data
Bases, 1987.

719

